

City of Milwaukee Health Department Laboratory

www.milwaukee.gov/healthlab Phone: (414) 286-3526

Bevan K. Baker, Commissioner of Health www.milwaukee.gov/health

SUMMARY OF CONFIRMED INFECTIONS

Steve Gradus, PhD, D(ABMM) Laboratory Director October 2016

Sanjib Bhattacharyya, PhD Deputy Laboratory Director

Syphilis

Test	Total	Test	Total
RPR Reactive	4	Darkfield Reactive	0
VDRL Reactive	26	TP-PA Reactive	10

Gonorrhea Antimicrobial Susceptibility Testing

Number	Non-Susceptible (NS) / Decreased Susceptible (DS) / Resistant (R) Antibiotics					
Tested	Ciprofloxacin	Cefixime	Ceftriaxone	Azithromycin		
22	2(R)	0	0	0		

Reference Cultures

Age	Sex	Source	Identification	
51	M	Stool	Campylobacter jejuni	
69	M	Bile fluid	Escherichia coli	
56	M	Conjunctiva	Neisseria gonorrhoeae	
72	F	Urine	Salmonella Hadar	

DNA Sequencing: The MHD laboratory uses 16S rRNA and the D2 region of the 26S rRNA genes for DNA sequence-based microbial identification of selective reference bacteria and fungal isolates.

Age	Sex	Source	Target gene	Final Identification
71	M	Bronchial wash	16S rRNA	Streptomyces californicus

Molecular Amplification

Agent	Method	Tested	Positives	Percent (%)
Norovirus	Real time RT-PCR	6	0	0
Mumps virus	Real time RT-PCR	2	0	0
Rubella virus	Real time RT-PCR	1	0	0
Bordetella pertussis	Real time PCR	4	0	0
Enterovirus	Real time RT-PCR	1	1	100
Mycoplasma pneumoniae	Real time PCR	1	1	100
Herpes simplex virus	Real time PCR	42	18	42

Chlamydia trachomatis (CT) and Neisseria gonorrhea (GC) Nucleic Acid Amplification

	Tested	CT		GC	
Source		Positives	Percent (%)	Positives	Percent (%)
Urine	485	60	12	27	6
Throat or NP	317	8	3	15	5
Rectal	119	15	13	5	4

Virus/Chlamydia trachomatis Isolation from Clinical Specimens

- Specimen tested for Cytomegalovirus(CMV) inmediate early antigen: n = 6 (October 2016)
- Specimen tested for *Chlamydia* detection by culture: n = 1 (October 2016)
- Specimens tested for virus isolation: n = 14 (October 2016)

Respiratory Virus Surveillance:

Respiratory Virus Panel Test Results				
Virus	Positives	Percent (%)		
Enterovirus / Rhinovirus	2	14		
Coronavirus OC43	1	7		

Specimens tested: n = 14 (Oct 2016 – *Not including Influenza PCR data*)

Note: The MHDL provides comprehensive detection of multiple respiratory viruses and their subtypes: Influenza A, Influenza B, Respiratory Syncytial Virus (RSV), Human Metapneumovirus (hMVP), Enterovirus/Rhinovirus (ENT/HRV), Adenovirus, Parainfluenza (HPIV 1-4), Coronavirus and Boca viruses.